
µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 1 - firmware rev 4.0

µChameleon 2
User’s Manual

Firmware Rev 4.0

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 2 - firmware rev 4.0

1. General overview...4
1.1. Features summary.. 4
1.2. USB CDC communication drivers .. 4
1.3. Command interpreter... 5
1.4. Firmware upgrades .. 5
1.5. External connectors ... 5

1. Getting started..6
1.6. Device driver installation .. 6
1.7. Test application: µChameleon control .. 6

1.7.1. Overview .. 6
1.7.2. Automatic device detection.. 7
1.7.3. Activity led toggling... 7
1.7.4. Digital I/Os panel ... 7
1.7.5. Direct command input .. 7

2. Programming reference ...8
1.8. Communication basics... 9

1.8.1. Opening communication .. 9
1.8.2. Checking for device presence .. 9
1.8.3. Checking for firmware version .. 9

1.9. Activity led .. 10
1.9.1. Turning the led on or off .. 10
1.9.2. Setting a led flashing pattern.. 10

1.10. Digital inputs – outputs .. 11
1.10.1. Setting pin direction ... 11
1.10.2. Reading pin state .. 11
1.10.3. Setting pin state .. 11
1.10.4. Activating pin pull-up .. 12
1.10.5. Monitoring pin activity... 12

1.11. Analog inputs ... 13
1.11.1. Reading pin voltage.. 13

1.12. Analog outputs - PWM - Frequency generation................................ 13
1.12.1. PWM applications .. 13
1.12.2. PWM commands summary .. 14
1.12.3. Pwm channel on or off ... 14
1.12.4. Pwm output frequency ... 14
1.12.5. Pwm duty cycle .. 15
1.12.6. Pwm polarity .. 15
1.12.7. Pwm prescaler .. 16
1.12.8. Pwm counter... 16

1.13. The Wait instruction: timing is everything .. 17
1.13.1. Creating a time zero reference ... 17
1.13.2. Waiting for a specific time ... 17
1.13.3. Wait sequence sample code.. 17

1.14. Frequency and pulse duration measurements 18
1.14.1. Measuring a full cycle length ... 18

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 3 - firmware rev 4.0

1.14.2. Measuring a single pulse length ... 18
1.14.3. Changing edge sensitivity .. 18

1.15. SPI – Serial Peripheral Interface.. 19
1.15.1. Introduction .. 19
1.15.2. Turning the SPI on and off ... 19
1.15.3. Setting clock rate .. 19
1.15.4. Setting clock phase and polarity... 20
1.15.5. Sending data ... 20
1.15.6. Receiving data .. 20
1.15.7. Setting the dummy byte.. 21
1.15.8. Full-duplex transmit – receive.. 21

1.16. UART Support ... 22
1.16.1. Introduction .. 22
1.16.2. Initialisation.. 22
1.16.3. Sending data ... 22
1.16.4. Receiving data .. 23
1.16.5. Asynchronous Notification .. 23

1.17. Variables and arithmetic .. 24
1.17.1. Dim... 24
1.17.2. Let... 24
1.17.3. Increment and decrement ... 25
1.17.4. Print .. 25
1.17.5. The ‘?’ special variable .. 25
1.17.6. Erasing variables .. 25

1.18. Conditional execution .. 26
1.18.1. If … then and relational operators.. 26

1.19. Event handlers.. 27
1.19.1. Introduction .. 27
1.19.2. The reset event ... 27
1.19.3. The background event .. 27
1.19.4. Background event clock source.. 27
1.19.5. Defining event handlers ... 28

2. Hardware Information ...29
2.1. Inputs / Outputs ... 29
2.2. Power supply circuitry... 29

2.2.1. Power circuitry overview ... 29
2.2.2. Power circuitry protections .. 29
2.2.3. Using an external wall-mount transformer... 30
2.2.4. Thermal considerations .. 30

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 4 - firmware rev 4.0

1. General overview

1.1. Features summary

• Full-speed USB 2.0 communication bandwidth: 1Mbytes/s
• Drivers available for Windows 98/Me/2000/XP/Vista, Linux, MacOS
• USB CDC class communications
• 8 analog inputs with 12 bits of resolution
• 18 general purpose digital I/Os
• 4 timer channels with pulse width modulation
• 4 timer channels can also measure frequency and pulse width
• Embedded command interpreter
• Autonomous operation
• Powers from USB, or wall-mount transformer, switches automatically
• Screw connectors to quickly connect your external circuits
• Compact size

1.2. USB CDC communication drivers

The µChameleon 2 uses the USB CDC class to communicate with its host PC.
What this means is that most operating systems can use built-in drivers, a
situation similar to what happens with USB keys. The µChameleon 2 will
appear like a legacy serial com port.
Compared to the first generation µChameleon, this will lead to an easier
installation, and more robust and consistent performance, while maintaining
the ease of use that came form virtual serial port communications.
Most applications written for the µChameleon 1 will work with the
µChameleon 2, with little or no re-writing.
If your programming environnement doesn’t natively support serial ports,
standard system libraries can be used to open and talk to the serial port, using
the same techniques that would be used with legacy com ports.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 5 - firmware rev 4.0

1.3. Command interpreter

The firmware inside your µChameleon runs a command interpreter that
understands full-text commands that let you access all of its hardware
resources. The small command set was optimized to provide what is necessary
for addressing real-world applications. It hides all the messy details so you can
focus on end application, and makes for a short learning curve. No more
complicated API that is difficult to learn, with lots of mandatory parameters
and subtle and hard to distinguish variants.

1.4. Firmware upgrades

We constantly work to improve the possibilities of the µChameleon, and
provide new features following customer input. New firmware can be
downloaded from our web site, and with our simple Firmware Upgrader PC
software, the newest features are just a click away. Additionally, the hardware
protected boot block cannot be erased accidentally, meaning you cannot end up
with a locked µChameleon. If something fails during upgrade, simply try
again.

1.5. External connectors

The external connectors provide 18 I/O pins. All of them are individually
programmable as digital inputs or outputs, and their state can be read or set.
Additionally, some of them have specialized functions for use as analog inputs,
analog outputs, frequency generation, pulse width modulation…
These special purpose pins are indicated on the label of your µChameleon as a
quick reference when connecting to external devices. Here is a summary of
these special function pins:

Special function Applicable pin numbers
digital i/o all pins
input pull-ups 9 to 16
analog inputs 1 to 8
analog outputs 9 to 12
pwm outputs 9 to 12
timers 9 to 12
spi 13 to 16
uart 17-18

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 6 - firmware rev 4.0

1. Getting started

1.6. Device driver installation

When you first connect your µChameleon to your computer, you may be
prompted for a driver, or a windows information file, so the system knows
wich driver to use. Please insert the installation disk provided with the
µChameleon, and choose the appropriate directory where the driver is located.

1.7. Test application: µChameleon control

1.7.1. Overview

On the install CD you received with your µChameleon 2 (also available
as a download on our web site) you will find an utility called
“µChameleon Control”, that lets you perform simple tests with a
graphical user interface, and that allows you to exert all the features of the
µChameleon, as well as show you it is properly connected (if multiple
µChameleons are connected to your computer, you will be able to select
the one you want to talk to).

Another interesting feature is that for every action you perform in the user
interface, the software shows you the command string that is sent to the
µChameleon (along with the response if applicable) so you can learn
along the process, making for a very short learning curve. In a few
minutes, you’ll understand how to perform most of the tasks in your own
applications.

Additionally, an entry box will let you type random commands that will
be sent as is to the µChameleon, again showing the eventual answer.

To install this software, simply launch the “setup.exe” in the
“µChameleon Control” under “Utilities” directory of the install CD, or
grab it on our “downloads” page on our web site.

This software full source code is available on the install CD and web site.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 7 - firmware rev 4.0

1.7.2. Automatic device detection

The frame called “Device selection” will show all µChameleon devices
connected to your computer, and allow the selection of the device you
want to talk to. Of course, if a single device is detected, it will be the
default selection.

1.7.3. Activity led toggling

Two buttons, labelled “led on” and “led off” will turn on and off the
activity led beside the usb connector of the µChameleon. This is one of
the simplest things you can do with it. Additionally, you can use an 8bits
word as a sequence for flashing effects, quickly showing a simple state
information, without looking at the computer screen. Try typing the
following command : “led pattern 5” (and press enter). You should see
the led moslty off, with 2 brief flashes. To revert to default state, send:
“led pattern 254”.

1.7.4. Digital I/Os panel

This panel shows a representation of the µChameleon, where every
connector has two clickable items. One is a square box with a letter I or
O, and sets the direction on the pin, as input or output, respectively. The
other mimics a led, and will show the state of the pin. When programmed
as an input, it will be light or dark green, corresponding to the high and
low state, respectively. When programmed as an output, the colours will
be light and dark red, indicating a high or low output.

1.7.5. Direct command input

This entry box allows you to directly type commands with your keyboard,
and send it to your µChameleon. The command is displayed in the
logging text box, as well as the answer, if applicable.
Check boxes allow you to select the type of string termination used.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 8 - firmware rev 4.0

2. Programming reference

This section describes all commands supported by the µChameleon firmware.
It is possible to try issuing commands, as a learning exercise, by using the
“µChameleon Control” application. Actions in the graphical interface will also
show (in the log text) the command corresponding to each action, and that was
actually sent. It is also possible to type commands by hand, in the ‘direct
command input’ box.
Note: In the rest of this manual, when we talk about sending a command, we
mean that the corresponding string is sent, followed by a LineFeed, or
CarriageReturn, or Cr-Lf combination.

Note: Commands to be sent will be shown in italics, like this: led on, as well as
replies.

The full source of the “µChameleon Control” being available, it is a great place
to start learning how to interact with the µChameleon, using proven code.
It can be used as a basis for your own applications, so feel free to cut/paste
code from it.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 9 - firmware rev 4.0

1.8. Communication basics

The µChameleon USB CDC class will create a ‘Virtual Com Port’, that means
that everything happens like if you where talking to a device connected to a
legacy serial port on your pc. Most programming environments will support
that feature, either through built-in functions, or the win32 api.
Although most programming examples will be provided using ‘Visual Basic’
style, it is generally straightforward to translate them to other programming
languages.

1.8.1. Opening communication

Before actually sending commands, it’s necessary to open the
communications port, and this will depend on your programming
environment, but in Visual Basic, would simply be:

MSComm1.PortOpen = True

1.8.2. Checking for device presence

Although it is not necessary, you might want to check if your
µChameleon is functioning properly and ready to accept commands. It
can be done by sending id, which the device should respond to by
returning the two words : id µChameleon2.

1.8.3. Checking for firmware version

It is possible to check the version of the firmware currently present in the
µChameleon with the following command:

 firmware -> firmware 4.0

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 10 - firmware rev 4.0

1.9. Activity led

Besides the USB connector of the µChameleon, there is a led that turns on at
power-up, with a small off flash, indicating the firmware is up and running, and
waiting to receive commands. It is also possible to act on this led by software.

1.9.1. Turning the led on or off

Turing the led on:
led on
led 1

Turn the led off:
led off
led 0

1.9.2. Setting a led flashing pattern

led pattern <n>

The led can be driven by a sequence of 8 ‘on’ and ‘off’ states, each state
corresponding to the state of a bit in the parameter byte. For example, if
you want the led to be mostly off, with 3 small flashes, the parameter
value can be: 21 (1 + 4 + 16).

Try by sending: led pattern 21

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 11 - firmware rev 4.0

1.10. Digital inputs – outputs

1.10.1. Setting pin direction

Setting the nth pin as an input:

pin <n> input
pin <n> in

Setting the nth pin as an output:

pin <n> output
pin <n> out

1.10.2. Reading pin state

Reading the nth pin state:

pin <n> state -> pin <n> 0 | 1

1.10.3. Setting pin state

Setting the nth pin high:

pin <n> high
pin <n> hi

Setting the nth pin low:

pin <n> low
pin <n> lo

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 12 - firmware rev 4.0

1.10.4. Activating pin pull-up

Activating pull-up on pin n:

pin <n> pullup on
pin <n> pullup 1

Deactivating pull-up on pin n:

pin <n> pullup off
pin <n> pullup 0

Note: The typical pull-up resistor value is around 47kOhms.

1.10.5. Monitoring pin activity

This is an alternative method to monitor pin states without having to use a
timer in your pc application to periodically poll for the state of pins.

Activating pin monitoring:

pin <n> monitor on | 1
pin <n> mon on | 1

Deactivating pin monitoring :

pin <n> monitor off | 0
pin <n> mon off | 0

When pin monitoring is active, the µChameleon will constantly check for
transitions on the selected pin, and report once per transition by sending
the same string that would be returned by the pin <n> state command.

For example, if you when to monitor pin 3, you will send:
pin 3 monitor on
and whenever a low to high transition will be detected, you will receive:
pin 3 1
or when a high to low transition happens, you will receive:
pin 3 0

Pin monitoring is supported by all 18 pins, and can be active
simultaneously on any pins combination.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 13 - firmware rev 4.0

1.11. Analog inputs

1.11.1. Reading pin voltage

Read voltage on pin n:

adc <n> -> adc <n> <v>

Pins 1 to 8 support the analog to digital conversion of a 0-5volts input to a
12 bit number. The firmware always responds by repeating the adc <n>,
this allows easy and unambiguous demultiplexing, without waiting for
answers each time a command is sent. The <v> value will be in the range
[0;4095] with 0 for 0volts and 4095 for 5volts.

1.12. Analog outputs - PWM - Frequency generation

1.12.1. PWM applications

The four timer channels of your µChameleon can be used to output
signals of controlled frequency and duty cycle, and each of them can be
used for a variety of purposes, including generation of analog voltages.

A simple R-C filter will generate a clean, linearly varying analog voltage,
and by changing this voltage at regular intervals, it is also possible to
generate arbitrary waveforms.

This makes it very simple to generate a programmable control voltage,
for example, the output voltage of a programmable power supply, the
frequency or a vco, in short, anything that can be controlled with an
analog voltage.

Is is also possible to use the pwm outputs without any filtering, the pwm
output connected directly, for example to control the brightness of a led,
of driving a power transistor or bridge, controlling the speed and direction
of a dc motor.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 14 - firmware rev 4.0

1.12.2. PWM commands summary

Here is a summary of the available commands:

pwm <n> on
pwm <n> off
pwm <n> period
pwm <n> width
pwm <n> polarity
pwm <n> prescaler
pwm <n> counter

 The following sections give details on using these commands.
 Note: these features are available on pins 9-10-11-12.

1.12.3. Pwm channel on or off

Turn on the pwm feature on pin n:

pwm <n> on

Turn off the pwm feature on pin n:

pwm <n> off

Note: these commands can be sent only once at the beginning and end of
an application, although it can be a good idea to set various parameters
like period and width before turning the pwm on.

1.12.4. Pwm output frequency

Set the signal period of pin n:

pwm <n> period <p>
pwm <n> per <p>

The period parameter is in timer clock cycle units, with a range
[0;65535]. Nominal frequency is 24MHz. For example, pwm 9 period
1000 will program the timer channel on pin 9 for a 24kHz frequency.
Note: this is true unless you have prescaled down the clock input – see
prescaler section 1.12.7.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 15 - firmware rev 4.0

1.12.5. Pwm duty cycle

Set the signal duty cycle of pin n:

pwm <n> width <w>
pwm <n> wid <w>

The width parameter is in timer clock cycle units, with a range [0;65535].
For example, if you want to generate a 30% duty cycle signal on pin 9
with a 10kHz frequency, you will send:

 pwm 9 period 2400
 pwm 9 width 720

Also, if you want to generate a variable frequency, but with a constant
50% duty cycle, the period being in a variable called myvar, you will
send:

 pwm 9 period myvar
 pwm 9 width myvar/2

Note: this syntax is a simplification, because myvar and myvar/2 should
be sent as string, and because other commands might be necessary,
notably turning the pwm channel on if this is the first action.

1.12.6. Pwm polarity

It is possible to control the polarity of the logic level of a pwm channel,
which will affect the meaning of the width parameter (a 30% duty cycle
would now become 70%).

Normal polarity: (default)

 pwm <n> polarity 0
 pwm <n> pol 0

Inverted polarity:

 pwm <n> polarity 1
 pwm <n> pol 1

Note: pwm channels 9 and 10, as well as 11 and 12 share their clock, so
you can easily generate complementary signals by programming two
channels identically, and just inverting the polarity of one of then.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 16 - firmware rev 4.0

1.12.7. Pwm prescaler

The period and width parameters of the pwm feature are expressed in
terms of cycle counts, with a default frequency of 24MHz, that is a
resolution just under 42ns (41.667ns). This means that the minimum
possible frequency is about 366Hz with no prescaling. It is also possible
to prescale the clock of pwm channels by the following divider amounts:
1,2,4,8,16,32,64,128. Default: 1.

 pwm <n> prescaler <p>
 pwm <n> pre <p>

1.12.8. Pwm counter

The free-running counter current value can be requested with the
following command:

 pwm <n> counter -> pwm <n> counter <c>
 pwm <n> cnt

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 17 - firmware rev 4.0

1.13. The Wait instruction: timing is everything

One of the requirements when interacting with the real-world is the ability to
make events occur at specific times. One way to achieve that on the
µChameleon is to use the wait instruction set.
It enables defining actions, like setting a pin hi or low, with precise intervening
times, in a way that does not depend on individual instructions execution time.
The wait time is defined as an additional time lapse referenced to a specific
zero time that is defined once. This is unlike having a pause, that would
accumulate small errors due to execution times. Also, times are defined by a
free running timer inside one of the four timer channels 9 to 12.

A typical application will consist of an instruction sequence having:

- first, an initialisation instruction to define time zero.
- then, normal instructions alternated with wait instructions.

1.13.1. Creating a time zero reference

The following instruction initialises a timer channel for use as a timing
source for the wait instruction, and sets the current timer as a zero
reference:

wait init <channel>

1.13.2. Waiting for a specific time

The following instruction inserts a time interval referenced from the
previous wait instruction, so an accurately timed sequence of actions can
be performed:

wait time <time>

The time parameter is specified in timer counter units.

1.13.3. Wait sequence sample code

For an example that produces 3 impulsions of 1ms, separated by 1ms
intervals (one pulse every 2ms), please load the ‘wait pulses.txt’ demo
code provided with the ‘µChameleon Control’ test application.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 18 - firmware rev 4.0

1.14. Frequency and pulse duration measurements

All four timer channels on the µChameleon can be used to measure the
frequency of an incoming signal, or the duration of a pulse.
The edge detection logic can be programmed to start measurement on a rising
(low to high - default) on falling (high to low) edge of the incoming signal.
Default resolution for these measurements is 42ns, but that depends on the
timer prescalers, so this can be changed with the pwm prescaler commands.

1.14.1. Measuring a full cycle length

The following instruction will wait for a transition of the input signal,
start counting using the hardware in the timer channels, and stop on the
same signal transition. The time interval is then reported.

 timer <pin> capture cycle

The µchameleon responds with:

timer <pin> capture cycle <count>

1.14.2. Measuring a single pulse length

The following instruction will wait for a transition of the input signal,
start counting using the hardware in the timer channels, and stop on the
opposite polarity transition. The time interval is then reported.

 timer <pin> capture pulse

The µchameleon responds with:

timer <pin> capture pulse <count>

1.14.3. Changing edge sensitivity

The following instruction sets the sensitivity of the capture instruction,
that is the edge that starts the capture feature:

timer <pin> capture edge <polarity>

 0 is negative going edge, 1 is positive (low to high - default).

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 19 - firmware rev 4.0

1.15. SPI – Serial Peripheral Interface

1.15.1. Introduction

The SPI feature of the µChameleon implements the three wire
synchronous communication found on many peripheral chips. It is
compatible with most devices on the market. The µChameleon will
always work as the master SPI port.

Synchronous serial port signal are assigned as follows:

pin 13 : SCK (Serial Clock)
pin 14 : MOSI (Master Out Slave In – TX)
pin 15 : MISO (Master In Slave Out – RX)

1.15.2. Turning the SPI on and off

Before being able to use the SPI, it should be turned on because the pins
are shared with regular I/O pins 13, 14 and 15.

Syntax: spi on
 spi off

Turning the spi of will revert the associated pin to their general purpose
I/O function.

1.15.3. Setting clock rate

The clock rate of the SPI can be varied with a prescaler that divides the
master clock (24MHz) of the µChameleon, by values of 2, 4, 8, 16, 32,
64, 128, or 256.
Divide by 2 is the default, providing 12Mbit/s transmission.

Syntax for setting the prescaler:

 spi prescaler <p>
 spi pre <p>

Example:

 spi prescaler 32 (set the clock generator to 750kHz)

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 20 - firmware rev 4.0

1.15.4. Setting clock phase and polarity

To adapt to the variety of peripheral devices one can have to connect to
the µChameleon, it is possible to set the polarity and phase of the SPI
with the following commands:

Normal polarity (normaly low, active high - default)
 spi polarity 0
 spi pol 0

Inverted polarity (normally high, active low)
 spi polarity 1
 spi pol 1

Normal phase (first clock edge begins in middle of data bit – default)
 spi phase 0
 spi pha 0

Inverted phase (clock edge and data change simultaneously)
 spi phase 1
 spi pha 1

1.15.5. Sending data

Data transmission is initiated with the following command:

Syntax: spi out <byte>

As soon as the command is received, the spi starts shifting the data at the
MOSI output and cycling the SCK output.

1.15.6. Receiving data

Data reception is initiated with the following command:

Syntax: spi in -> spi in <byte>

As soon as the command is received, the spi starts cycling the SCK
output, shifting the data from the MISO input. After 8 clock cycles, the
µChameleon sends the data back with the above syntax.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 21 - firmware rev 4.0

1.15.7. Setting the dummy byte

Due to the inherently full-duplex nature of the SPI, when receiving data,
the MOSI output remains idle, as if it where sending a zero byte.

This default behaviour can be changed with:

 spi dummy <byte>

1.15.8. Full-duplex transmit – receive

It is possible to combine a transmit and receive operation with the
following command:

 spi swap <tx byte> -> spi in <rx byte>

When the spi swap command is received by the µChameleon, the spi
starts cycling the SCK output, shifting out the data on the MOSI input,
and simultaneously shifting in the data form the MISO input.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 22 - firmware rev 4.0

1.16. UART Support

1.16.1. Introduction

The µChameleon features a hardware uart (universal asynchronous receiver
transmitter) that is similar to the legacy serial ports found on many devices,
including PCs and instrumentation. Uart pins on the µChameleon use logic
level voltages. For voltage levels compatible with RS-232, an external voltage
translator should be used (contact us for availability). The 4.0 firmware only
supports hardware flow control (DTR/CTS).

1.16.2. Initialisation

Uart is initialised in a fixed mode after reset at a default 9600 bauds, 8 bits, 1
stop bit, no parity, with hardware flow control on pins 16 (output-RTS) and 15
(input-CTS). TX is pin 18, RX is pin 17.

In order to enable the uart, including flow control pins, the following command
should be sent:

 uart on

In order to disable the uart, and return its pins, including flow control pins, to
general purpose I/O operation, the following command should be sent:

 uart off

1.16.3. Sending data

Data is sent out with:

uart send <n> <…data…>

where <n> is a text string representing the number of bytes to send, followed
by the actual bytes to send. The presence of the byte count makes it possible to
have the data contain not only text strings, but include any 8-bit binary value.

Example

 uart send 5 hello

 Note: this command does not require a carriage return of line feed at the end.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 23 - firmware rev 4.0

1.16.4. Receiving data

To receive data, simply send the "uart receive" command:

 uart receive

If then µChameleon has no received bytes in its internal buffer, it will simply
answer:

 uart receive 0

In the more general case, the µChameleon will respond by returning the "uart
receive" string, followed by a space character, then a number indicating the
bytes that will follow, then the actual bytes. The format is the same as the send
command. The data bytes can contain text or binary data.

 Example:

 uart receive 5 hello

Note: a termination will be sent after the command, but the byte count will
always reflect the number of bytes that were actually received, with no data
filtering performed, in order to maintain transparent text/binary compatibility.

1.16.5. Asynchronous Notification

It is sometimes desirable to be notified of incoming data without having to
regularly poll the µChameleon with “uart receive” commands.

 Turning on the notification feature is done with:

 uart notify <bytes>

Anytime the internal buffer has gathered sufficient data (at least a certain byte
count threshold), the µChameleon will automatically send data using the “uart
receive” format as defined in the previous section.

If necessary, it is possible to revert to explicit polling with:

 uart notify 0

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 24 - firmware rev 4.0

1.17. Variables and arithmetic

1.17.1. Dim

The dim statement create a new variable, stores its name and type, and
allocates memory for it. The variable name and type are stored permanently in
the flash memory, but the value is not retained when power is lost.

Syntax: dim <varname> as <type>

Example: dim myvar as int

Notes: It is possible to define up to 32 variables. Variable names may have up
to 12 characters. Only the ‘int’ type (32 bit signed integer) is defined in
firmware 4.0.

1.17.2. Let

The let statement assigns a value to a variable, the right side of the equal sign
being either a single variable or constant, or an arithmetic operation combining
two variables or constants.

Syntax: let <variable> = <value>
 let <variable> = <value> <operator> <value>

Examples: let x = 0

 let counter = counter + 3
 let speed = speed * accel

 Available operators:

operator arithmetic performed
+ addition
- subtraction
* multiplication
/ division

% modulo

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 25 - firmware rev 4.0

1.17.3. Increment and decrement

Instead of writing: let var = var + 1
One can write: increment var
Or: incr var

Instead of writing: let var = var - 1
One can write: decrement var
Or: decr var

This is generally more convenient, results in more compact code, and is also
faster.

1.17.4. Print

It is possible to query the value of a variable with the print statement.

Syntax: print <varname>

This command will send the variable content to the USB communication port.

1.17.5. The ‘?’ special variable

Some former commands, like ‘adc’ or ‘pin’, have their last value stored in a
special variable that can be accessed with the ‘?’ sign.

Example: adc 1
 let voltage = ?

the ‘voltage’ variable (that we suppose was created previously
with ‘dim’) now contains the result of the last analog to digital
conversion.

Note: the ‘?’ sign can be used in any place a variable or constant would be
used.

1.17.6. Erasing variables

It is possible to erase all variables, and their definitions, as well as freeing the
memory they use with the erase command:

Syntax: erase dims

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 26 - firmware rev 4.0

1.18. Conditional execution

1.18.1. If … then and relational operators

If statements provide the ability to conditionally execute commands based on
comparison between values.

The general form it takes is the following:

 if <value A> <operator> <value B> then <command>

The value parameters can be any variable or constant. The operator can be any
of the following:

operator comparison performed

= equal to
<> not equal to
> strictly greater than

>= greater or equal
< strictly less than

<= less or equal

Examples: if counter >= 1024 then let counter = 0
 if voltage < 128 then pin 3 low

 if alert = 1 then led pattern 5

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 27 - firmware rev 4.0

1.19. Event handlers

1.19.1. Introduction

Event handlers provide a way to store a list of instructions to be executed when
a specific event occurs. They are similar to functions or procedures in most
programming languages except they don’t take parameters.

There are currently two defined events: ‘reset’ and ‘background’.

1.19.2. The reset event

As the name implies, the reset event occurs once at power-up and every time
the µChameleon is reset, either via software, by pressing the reset button, or
when power is cycled.

1.19.3. The background event

The background event is a periodic event triggered by an internal oscillator
running at approximately 20Hz. It can be turned on or off (default after reset is
off).

 Syntax for turning on the periodic event generator:
 background on
 back on

Syntax for turning off the periodic event generator:
 background off
 back off

1.19.4. Background event clock source

It is possible to use the hardware timer pwm generated clocks as sources for the
background events, instead of the default internal 20Hz clock.
This way, higher background code frequency, and/or more precise clock
generation is possible.
One will start by generating a specified clock frequency using a pwm channel
on any of the 4 timer channels as explained in the pwm section, and then
linking the background event to that specific channel with the following
command:

 background clock <n>
 back clk <n>

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 28 - firmware rev 4.0

1.19.5. Defining event handlers

Syntax for defining event handlers:

 onevent <event name>
 <instruction line 1>
 <instruction line 2>
 .
 .
 .
 <instruction line n>
 endevent

Example:

 onevent reset
 pin 2 output
 background on
 endevent

 onevent background
 adc 1
 if ? > 135 then pin 2 low
 if ? < 126 then pin 2 high
 endevent

Note: The preceding example show how simple it is to implement a simple
standalone temperature controller with hysteresis.

The memory footprint available for event handlers is 1024 bytes for the reset
event, and 7168 bytes for the background event.

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 29 - firmware rev 4.0

2. Hardware Information

2.1. Inputs / Outputs

All inputs are very high impedance CMOS inputs (typically greater than
10Mohms.)
All I/Os have current limiting drivers. This enables a direct connection to
LEDs, opto-couplers, power transistors, miniature relays, piezo buzzers,
small loudspeakers… with a typical current output of 20mA.

2.2. Power supply circuitry

2.2.1. Power circuitry overview

• Powers from USB
• Powers from wall-mount transformer
• Powers from local regulated +5 Volts
• Switches automatically between its power sources
• Provides power to your external circuitry
• Multiple protection schemes ensure high reliability

The power circuitry of the µChameleon is extremely flexible, and has
been designed to adapt to as many real-world situations as possible.
First, it can be powered directly by the USB port of your computer, which
is the default configuration most users are satisfied with.
In some instances however, for example when using an bus powered hub
that is not capable of providing enough current, or to conserve the battery
of a laptop, or to get an accurate 5 Volts level for some analog
applications, the µChameleon has an internal linear regulator.

2.2.2. Power circuitry protections

The power circuitry is protected against the following situations:

• Polarity inversion of wall-mount connection
• Board power short circuit
• Current consumption over 500mA (protects your computer)
• Over-temperature of linear 5Volts regulator

µChameleon 2 User’s Manual

Copyright © 2006-2011 Starting Point Systems. - Page 30 - firmware rev 4.0

2.2.3. Using an external wall-mount transformer

Simply connect a standard wall-mount transformer, with a typical output
voltage between 9Volts and 12Volts to the black connector beside the usb
connector. The external voltage will be internally regulated to a clean
5Volts, and the µChameleon will switch from USB power automatically.

2.2.4. Thermal considerations

When powered by an external transformer, the region near the power
connector can feel warm to the touch. This is normal. However, it is
suggested not to apply more than 16 Volts to the external power input,
especially at high currents, as this will increase the heat produced by the
internal linear regulator.

	General overview
	Features summary
	USB CDC communication drivers
	Command interpreter
	Firmware upgrades
	External connectors

	Getting started
	Device driver installation
	Test application: µChameleon control
	Overview
	Automatic device detection
	Activity led toggling
	Digital I/Os panel
	Direct command input

	Programming reference
	Communication basics
	Opening communication
	Checking for device presence
	Checking for firmware version

	Activity led
	Turning the led on or off
	Setting a led flashing pattern

	Digital inputs – outputs
	Setting pin direction
	Reading pin state
	Setting pin state
	Activating pin pull-up
	Monitoring pin activity

	Analog inputs
	Reading pin voltage

	Analog outputs - PWM - Frequency generation
	PWM applications
	PWM commands summary
	Pwm channel on or off
	Pwm output frequency
	Pwm duty cycle
	Pwm polarity
	Pwm prescaler
	Pwm counter

	The Wait instruction: timing is everything
	Creating a time zero reference
	Waiting for a specific time
	Wait sequence sample code

	Frequency and pulse duration measurements
	Measuring a full cycle length
	Measuring a single pulse length
	Changing edge sensitivity

	SPI – Serial Peripheral Interface
	Introduction
	Turning the SPI on and off
	Setting clock rate
	Setting clock phase and polarity
	Sending data
	Receiving data
	Setting the dummy byte
	Full-duplex transmit – receive

	UART Support
	Introduction
	Initialisation
	Sending data
	Receiving data
	Asynchronous Notification

	Variables and arithmetic
	Dim
	Let
	Increment and decrement
	Print
	The ‘?’ special variable
	Erasing variables

	Conditional execution
	If … then and relational operators

	Event handlers
	Introduction
	The reset event
	The background event
	Background event clock source
	Defining event handlers

	Hardware Information
	Inputs / Outputs
	Power supply circuitry
	Power circuitry overview
	Power circuitry protections
	Using an external wall-mount transformer
	Thermal considerations

